A Fast and Robust License Plate Detection Algorithm Based on Two-stage Cascade AdaBoost
نویسندگان
چکیده
License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.
منابع مشابه
Iranian Vehicle License Plate Detection based on Cascade Classifier
A license plate recognition system contains three main steps: plate detection, character segmentation and character recognition. The first and foremost step of this system is the plate detection stage where the plate is located from the input image. In this paper an effective plate detection approach is developed based on a cascade classifier. A two-phase training approach is proposed to enhanc...
متن کاملHierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection
We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminativ...
متن کاملReal-Timely Detecting License Plate under Various Conditions
This paper proposes a learning-based algorithm for real-time license plate detection. Two kinds of features, statistical gradient features and Haar-like features, are used in the algorithm. Firstly, two statistical features are extracted from vertical gradient images. Classifiers based on these two features are constructed through simple learning procedures respectively. Using these classifiers...
متن کاملA Multi-Stage Approach to Fast Face Detection
A multi-stage approach — which is fast, robust and easy to train — for a face-detection system is proposed. Motivated by the work of Viola and Jones [1], this approach uses a cascade of classifiers to yield a coarse-to-fine strategy to reduce significantly detection time while maintaining a high detection rate. However, it is distinguished from previous work by two features. First, a new stage ...
متن کاملMulti-Stage Approach to Fast Face Detection
This paper describes a multi-stage approach for achieving fast and robust face detection. This approach was motivated by the work of Viola and Jones [7] using a cascade of classifiers yielding a coarse-to-fine strategy to significantly reduce detection time while maintaining high detection rate. However, it is distinguished from the previous work by two facts: (i) First, a new stage is added to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- TIIS
دوره 8 شماره
صفحات -
تاریخ انتشار 2014